Wave Problem Review

Remember:	$\mathbf{E} = (\mathbf{h})^{\cdot}(\mathbf{f})$	and	$v = (\lambda)(f)$
E = energy (J)			$v = speed of light (3.0 x 10^8 m/s)$
f = frequency (Hz)			h = Planck's constant (6.6 x 10^{-34} J/Hz)
$\lambda =$ wavelength (m)			$1 \ge 10^9 \text{ nm} = 1 \text{ m}$

- 1. If the frequency of light is 5.8×10^{15} Hz, then what is the wavelength?
 - a. What is the energy of the light?
 - b. What type of radiation is this?
- 2. If $\lambda = 540$ nm, then what is the wavelength in meters?
 - a. What is the frequency of the light?
 - b. What is the energy of the light?
 - c. What is the color of the light?

- 3. If the energy of light is 3.6×10^{-18} J, what is the frequency of the light?
 - a. What is the λ ?
 - b. What type of radiation is this?
- 4. If the frequency of light is 4×10^{13} Hz, what is its energy?
 - a. What is the wavelength?
 - b. What type of radiation is this?
- 5. If the wavelength is 3×10^{-11} m, what is the frequency of the radiation?
 - a. What is the energy?
 - b. What type of radiation is this?