Wave Problem Review 2

Remember:	$\mathbf{E} = (\mathbf{h})^{\cdot}(\mathbf{f})$	and	$v = (\lambda)(f)$
E = energy (J)			v = speed of light $(3.0 \times 10^8 \text{ m/s})$
f = frequency (Hz)			h = Planck's constant (6.6 x 10^{-34} J/Hz)
$\lambda =$ wavelength (m)			$1 \ge 10^9 \text{ nm} = 1 \text{ m}$

- 1. If the frequency of light is 7.7×10^{20} Hz, then what is the wavelength?
 - a. What is the energy of the light?
 - b. What type of radiation is this?
- 2. If $\lambda = 680$ nm, then what is the wavelength in meters?
 - a. What is the frequency of the light?
 - b. What is the energy of the light?
 - c. What is the color of the light?

- 3. If the energy of light is 5.1×10^{-15} J, what is the frequency of the light?
 - a. What is the λ ?
 - b. What type of radiation is this?
- 4. If the frequency of light is 3.2×10^{17} Hz, what is its energy?
 - a. What is the wavelength?
 - b. What type of radiation is this?
- 5. If the wavelength is 2.0×10^{-14} m, what is the frequency of the radiation?
 - a. What is the energy?
 - b. What type of radiation is this?