Specific Heat Problems

Change in Energy $=($ mass $) \times$ (change in temperature $) \times($ specific heat $)$
Change in Temperature $=($ final temperature $) ~-($ initial temperature $)$
$Q=(m) \times\left(T_{f}-T_{i}\right) \times c$
Units: $\quad \mathrm{Q}=$ Joules or calories $\quad \mathrm{T}={ }^{\circ} \mathrm{C} \quad \mathrm{C}=\mathrm{J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ or $\mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$

1. Copper has a specific heat of $0.387 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$. If you have a piece of copper with a mass of 75 g that is heated up by $15^{\circ} \mathrm{C}$, how much heat is required?
2. Marble has a specific heat of $0.858 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$. If a piece of marble has a mass of 120 g and it starts at a temperature of $50^{\circ} \mathrm{C}$ and goes to $88^{\circ} \mathrm{C}$, how much heat is required?
3. If you have a piece of metal that has a mass of 1275 g , its energy increases by $11,000 \mathrm{~J}$, and its temperature rises by $12{ }^{\circ} \mathrm{C}$, what is its specific heat?
4. If you increase the energy of a block of lead by $150,000 \mathrm{~J}$ and the temperature rises by $25^{\circ} \mathrm{C}$, what is the mass of the lead if the specific heat is $0.128 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$?
5. If you have a wood board that has a mass of 5000 g and a specific heat of $1.674 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$, how much would the temperature of the board rise if it absorbed 325,000 J of energy?
6. If a 500 g piece of ice is at a temperature of $-25^{\circ} \mathrm{C}$, and it given 5500 cal of energy, will the ice melt? If not, what is the final temperature of the ice? The specific heat for ice is $0.5 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$.
7. If 1750 g ocean water is heated up with 130,000 cal of energy and 1750 g of tap water is heated with the same amount of energy, which sample of water will end up at a higher temperature? Assume both samples of water start out at $21^{\circ} \mathrm{C}$. The specific heat of ocean water is $0.93 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$ and the specific heat of tap water is $1.00 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$.
8. If the air in this room has a mass of $450,000 \mathrm{~g}$ and the specific heat of air is $0.25 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$, how much heat would it take to get the air temperature from $15^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$?
9. If $1,000,000$ calories of heat was added to a room that contained $425,000 \mathrm{~g}$ of air and the final temperature of the room was $25^{\circ} \mathrm{C}$, what was the initial temperature of the air in the room? (assume that the specific heat of air is $0.25 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$)
10. What would be the specific heat of an object if its temperature dropped from $530^{\circ} \mathrm{C}$ to $270^{\circ} \mathrm{C}$ and it also lost 75000 cal of heat? Assume that the mass of the object is 625 g .
