| Name | Class | Date | | |------|-------|------|--| | | : | 1 | | ## Problem Solving continued ## **COMPUTE** 500. g.CH₄ × $$\frac{1 \text{ mol-CH}_4}{16.05 \text{ g.CH}_4}$$ × $\frac{2 \text{ mol-H}_2O}{1 \text{ mol-CH}_4}$ × $\frac{18.02 \text{ g H}_2O}{1 \text{ mol-H}_2O}$ = $1.12 \times 10^3 \text{ g H}_2O$ ## **EVALUATE** Are the units correct? Yes; mass of H₂O was required, and units canceled to give grams H₂O. Is the number of significant figures correct? Yes; three significant figures is correct because the mass of CH_4 was given to three significant figures. Is the answer reasonable? Yes; CH_4 and H_2O have similar molar masses, and twice as many moles of H_2O are produced as moles CH_4 burned. So, you would expect to get a little more than 1000~g of H_2O . ## **Practice** **1.** Calculate the mass of silver bromide produced from 22.5 g of silver nitrate in the following reaction: $$2AgNO_3(aq) + MgBr_2(aq) \rightarrow 2AgBr(s) + Mg(NO_3)_2(aq)$$ ans: 24.9 g AgBr **2.** What mass of acetylene, C₂H₂, will be produced from the reaction of 90. g of calcium carbide, CaC₂, with water in the following reaction? $$CaC_2(s) + 2H_2O(l) \rightarrow C_2H_2(g) + Ca(OH)_2(s)$$ ans: 37 g C_2H_2 **3.** Chlorine gas can be produced in the laboratory by adding concentrated hydrochloric acid to manganese(IV) oxide in the following reaction: $$MnO_2(s) + 4HCl(aq) \rightarrow MnCl_2(aq) + 2H_2O(l) + Cl_2(g)$$ - **a.** Calculate the mass of MnO_2 needed to produce 25.0 g of Cl_2 . ans: 30.7 g MnO_2 - **b.** What mass of MnCl₂ is produced when 0.091 g of Cl₂ is generated? ans: 0.16 g MnCl₂