Name	Class	Date	
	:	1	

Problem Solving continued

COMPUTE

500. g.CH₄ ×
$$\frac{1 \text{ mol-CH}_4}{16.05 \text{ g.CH}_4}$$
 × $\frac{2 \text{ mol-H}_2O}{1 \text{ mol-CH}_4}$ × $\frac{18.02 \text{ g H}_2O}{1 \text{ mol-H}_2O}$ = $1.12 \times 10^3 \text{ g H}_2O$

EVALUATE

Are the units correct?

Yes; mass of H₂O was required, and units canceled to give grams H₂O.

Is the number of significant figures correct?

Yes; three significant figures is correct because the mass of CH_4 was given to three significant figures.

Is the answer reasonable?

Yes; CH_4 and H_2O have similar molar masses, and twice as many moles of H_2O are produced as moles CH_4 burned. So, you would expect to get a little more than 1000~g of H_2O .

Practice

1. Calculate the mass of silver bromide produced from 22.5 g of silver nitrate in the following reaction:

$$2AgNO_3(aq) + MgBr_2(aq) \rightarrow 2AgBr(s) + Mg(NO_3)_2(aq)$$
 ans: 24.9 g AgBr

2. What mass of acetylene, C₂H₂, will be produced from the reaction of 90. g of calcium carbide, CaC₂, with water in the following reaction?

$$CaC_2(s) + 2H_2O(l) \rightarrow C_2H_2(g) + Ca(OH)_2(s)$$
 ans: 37 g C_2H_2

3. Chlorine gas can be produced in the laboratory by adding concentrated hydrochloric acid to manganese(IV) oxide in the following reaction:

$$MnO_2(s) + 4HCl(aq) \rightarrow MnCl_2(aq) + 2H_2O(l) + Cl_2(g)$$

- **a.** Calculate the mass of MnO_2 needed to produce 25.0 g of Cl_2 . ans: 30.7 g MnO_2
- **b.** What mass of MnCl₂ is produced when 0.091 g of Cl₂ is generated? ans: 0.16 g MnCl₂