Heat Problems 2

Name:
Show your work to receive credit!

Density of water $=1 \mathrm{~g} / \mathrm{ml} . \quad{ }^{\circ} \mathrm{C}=\mathrm{K}-273 \quad$ kilo $(\mathrm{k})=1000$
$\mathrm{H}=(\mathrm{m})(\Delta \mathrm{T})(\mathrm{c}) \quad(\Delta \mathrm{T})=\mathrm{T}_{2}-\mathrm{T}_{1} \quad$ For water: $\mathrm{c}=4.2 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}=1 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$

1. If a 50.0 g chunk of iron is added to 700.0 mL of water and the temperature of the water rises by $7.0^{\circ} \mathrm{C}$, how much heat did the iron provide to the water?
a. How much heat per gram of iron is this?
2. What is the temperature change $(\Delta \mathrm{T})$ if 5015 J of energy is absorbed by 88.5 mL of water?
3. If the temperature of 250.0 mL of water rises from $45^{\circ} \mathrm{C}$ to $77^{\circ} \mathrm{C}$, as 44 g of liquefied wax freezes in the water, what is the amount of heat gained by the water?
a. What is the amount of heat lost by the wax?
b. What is the heat of crystallization of the wax?
4. A potato chip is lit on fire and placed under a container of water. If the container had 225 mL of water in it and the temperature of the water increased by $15^{\circ} \mathrm{C}$, how much heat (calories) did the potato chip provide to the water?
a. How many calories per gram did the potato chips have if the chip had a mass of 7.3 g ?
5. If an object has a starting temperature of $88^{\circ} \mathrm{C}$ and a final temperature of 375 K , its specific heat is 1.55 $\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}$, and it has an energy change of 58 J , what is the mass of the object?
6. What is the specific heat of a 585 g object if it gives off 7220 J of heat when the temperature changes by $66^{\circ} \mathrm{C}$?
7. How much heat is lost if an object has the following properties: $\mathrm{m}=125 \mathrm{~g}, \mathrm{~T}_{1}=16^{\circ} \mathrm{C}, \mathrm{T}_{2}=415^{\circ} \mathrm{K}, \mathrm{c}=$ $2.1 \mathrm{~J} / \mathrm{g}^{\mathrm{o}} \mathrm{C}$.
8. If a liquid having a mass of 455 g and a specific heat of $0.78 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$ is subjected to 5560 calories of heating, what will it final temperature be, if its starting temperature is $11^{\circ} \mathrm{C}$?
9. 475 ml of water is cooled down with some ice. The temperature of the water went from $21^{\circ} \mathrm{C}$ to $2.0^{\circ} \mathrm{C}$. In the end, there was a total of 541 ml of water. How many Joules of heat did the water lose?
a. How much heat did the ice gain?
b. What was the heat of fusion of the ice? (heat per gram needed to melt the ice)
10. What is the mass of a piece of ice, if it requires 3788 calories to heat the ice from $220^{\circ} \mathrm{K}$ to $-11^{\circ} \mathrm{C}$? The specific heat of ice is $0.50 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$.
