Gas Law Review 2

Solve the following problems based upon the indicated changes:
Remember that Temperature has to be in degrees Kelvin.
$\underline{\mathbf{P}}_{1} \underline{\mathbf{V}}_{\underline{1}}=\underline{\mathbf{P}}_{2} \underline{V}_{\underline{2}}$
$\mathbf{P V}=\mathbf{n R T}$
$\mathrm{R}=8.31 \frac{\mathrm{~L} * \mathrm{kPA}}{\mathrm{mol} * \mathrm{~K}}$

1. 350.0 ml of N_{2} gas at $70.0^{\circ} \mathrm{C}$ is heated to 400.0 K at a constant pressure.
a. What is the new volume of the gas in ml ?
b. What is the volume in liters?
2. 465 L of O_{2} gas at 800.0 mmHg of pressure is exposed to a 50.0 mmHg increase in pressure.
a. What is the final pressure in mmHg ?
b. What is the new volume in liters if the temperature remains constant?
3. A sample of CO_{2} gas that occupied $12.6 \mathrm{~cm}^{3}$ at a temperature of 250.0 K and a pressure of 99.8 kPa now has a temperature of $0.00^{\circ} \mathrm{C}$ and a volume of 32.0 ml .
a. What is the new pressure in kPa ?
b. What is the new pressure in mmHg ?
4. A sample of neon starting at 300.0 K and 140.0 kPa is cooled to 250.0 K and its pressure drops by 14.0 kPa
a. What is the final pressure?
b. If the ending volume of the gas was 233 ml , what was the starting volume of the gas?
5. If 0.360 moles of helium is at $22.0^{\circ} \mathrm{C}$ and 660.0 mmHg , what is its volume?
6. If 2.00 L of water vapor is at a temperature of 400.0 K and a pressure of 740.0 kPa , how many moles of gas are present?
7. A gas is originally at $46.0^{\circ} \mathrm{C}$ and has a volume of 350.0 ml . Assuming there is no pressure change, and the ending volume is 385 ml ,
a. Did the gas heat up or cool off?
b. What is the final temperature in Kelvin?
c. What is this temperature in Celsius?
8. If 3.50 L of methane gas at 1.05 atm of pressure is reduced in volume to 2.90 L while the temperature is held constant:
a. Did the pressure have to go up or down?
b. What is the new pressure in atmospheres?
c. What is the new pressure in kPa ?
9. If 2.00 moles of chlorine gas is at STP:
a. What is the formula for chlorine gas?
b. How many grams of chlorine is this?
c. What is the volume of the gas in liters?
10. A sample of gas at STP has a volume of $145 \mathrm{~cm}^{3}$. If the final temperature of the gas is $42.0^{\circ} \mathrm{C}$ and the ending volume is 135 ml , what is the pressure of the gas in mmHg ?
11. You have a 40 g sample of helium (He) at $23^{\circ} \mathrm{C}$ and a pressure of 99.8 kPa ,
a. How many moles of He is this?
b. What is the volume of the He ?
12. Suppose you are trying to get a gas to expand as much as you possible could...what would you do to the:
a. Temperature?
b. Pressure?
