Calculating work and power

	Distance (m)	Force (N)	Time (s)	Work (J)	Power (W)
1	6	10	4		
2	4		5		50
3		30		600	300
4	10	500			100
5	16		8	64	
6	0.5	100			25
7		200	2	100	
8	50		30	1500	
9	100	800			4000
10	8	25	75		
11	12		15		350
12		125		1000	7000
13	75	15			750
14	10.5		7	85	
15		175	150	12000	

Calculate the missing numbers in the table below.

Fill in the missing word.

- 1. A 100 W light bulb has more ______ than a 60 W light bulb.
- 2. Power is the amount of _____ per unit of time.
- 3. The unit of power is equal to one _____ per second.
- 4. ______ is the rate at which work is done.
- 5. Electrical appliances are rated in _____.
- 6. Power can be calculates by multiplying force x distance and dividing by ______.
- 7. When the ______ needed to do work increase, the power decreases.
- 8. A 150 W light bulb does 150 _____ of work in 1 s.
- A 15 hp lawn mower can do more ______ in the same amount of time than a 12 hp lawn mower can.
- 10. If time and force do not change, the only way for power to increase is if ______

increases.