Calculating work and power

Calculate the missing numbers in the table below.

	Distance (m)	Force (N)	Time (s)	Work (J)	Power (W)
1	6	10	4		
2	4		5		50
3		30		600	300
4	10	500			100
5	16		8	64	
6	0.5	100			25
7		200	2	100	
8	50		30	1500	
9	100	800			4000
10	8	25	75		
11	12		15		350
12		125		1000	7000
13	75	15			750
14	10.5		7	85	
15		175	150	12000	

Fill in the missing word.

1. A 100 W light bulb has more \qquad than a 60 W light bulb.
2. Power is the amount of \qquad per unit of time.
3. The unit of power is equal to one \qquad per second.
4. \qquad is the rate at which work is done.
5. Electrical appliances are rated in \qquad .
6. Power can be calculates by multiplying force x distance and dividing by \qquad .
7. When the \qquad needed to do work increase, the power decreases.
8. A 150 W light bulb does 150 \qquad of work in 1 s .
9. A 15 hp lawn mower can do more \qquad in the same amount of time than a 12 hp lawn mower can.
10. If time and force do not change, the only way for power to increase is if \qquad increases.
